API Reference
Fallback dispatch
When extending QUBOTools, one might want to implement a method for QUBOTools.backend.
QUBOTools.backend — Functionbackend(model)::AbstractModel
backend(model::AbstractModel)::AbstractModelAccesses the model's backend. Implementing this function allows one to profit from fallback implementations of other methods.
Variable System
QUBOTools.index — Functionindex(model::AbstractModel{V}, v::V) where {V}Given a variable, returns the corresponding index.
QUBOTools.indices — Functionindices(model)Returns a sorted vector $[1, \dots, n]$ that matches the variable indices, where $n$ is the model's dimension.
QUBOTools.hasindex — Functionhasindex(model::AbstractModel, i::Integer)::BoolGiven an index, returns whether it is valid for rhe model.
QUBOTools.variable — Functionvariable(model::AbstractModel, i::Integer)Given an index, returns the corresponding variable.
QUBOTools.variables — Functionvariables(model)Returns a sorted vector containing the model's variables.
QUBOTools.hasvariable — Functionhasvariable(model::AbstractModel{V}, v::V)::Bool where {V}Given a variable, tells if it belongs to the model.
QUBOTools.VariableMap — TypeVariableMap{V}Establishes a bijection between variables and their indices. The interface for accessing this mapping relies on QUBOTools.index and QUBOTools.variable.
PseudoBooleanOptimization.varlt — Functionvarlt(u::V, v::V) where {V}Compares two variables, $u$ and $v$, with respect to their length-lexicographic order.
Rationale
This function exists to define an arbitrary ordering for a given type and was created to address [MOI]. There is no predefined comparison between instances MOI's VariableIndex type.
[^MOI]: MathOptInterface Issue [#1985](https://github.com/jump-dev/MathOptInterface.jl/issues/1985)Objective & Domain Frames
QUBOTools.Domain — TypeDomainEnum representing binary variable domains, BoolDomain and SpinDomain.
QUBOTools.BoolDomain — ConstantBoolDomainRepresents the boolean domain $\mathbb{B} = \lbrace{0, 1}\rbrace$.
Properties
\[x \in \mathbb{B}, n \in \mathbb{N} \implies x^{n} = x\]
QUBOTools.SpinDomain — ConstantSpinDomainRepresents the spin domain $\mathbb{S} = \lbrace{-1, 1}\rbrace$.
Properties
\[s \in \mathbb{S}, n \in \mathbb{Z} \implies s^{2n} = 1, s^{2n + 1} = s\]
QUBOTools.domain — Functiondomain(model::AbstractModel)Returns the variable domain of a given model.
QUBOTools.Sense — TypeSenseEnum representing the minimization and maximization objective senses, Min and Max.
QUBOTools.sense — Functionsense(model)Returns the objective sense of a model.
QUBOTools.Frame — TypeFrame(sense::Sense, domain::Domain)QUBOTools.frame — Functionframe(model)QUBOTools.cast — FunctionRecasting the sense of a model preserves its meaning but the linear terms, quadratic terms and constant offset of a model will have its signs reversed, so does the overall objective function.
\[\begin{array}{ll} \min_{s} \alpha [f(s) + \beta] &\equiv \max_{s} -\alpha [f(s) + \beta] \\ &\equiv \max_{s} \alpha [-f(s) - \beta] \\ \end{array}\]
Casting to the same (sense, domain) frame is a no-op. That means that no copying will take place automatically, and therefore copy should be called explicitly when necessary.
Errors
QUBOTools.CastingError — TypeCastingErrorError while casting data between domains or senses.
Models
QUBOTools.AbstractModel — TypeAbstractModel{V,T,U}Represents an abstract QUBO Model.
As shown in the example above, implementing a method for the QUBOTools.backend function gives access to most fallback implementations.
QUBOTools.Model — TypeModel{V,T,U,F<:AbstractForm{T}} <: AbstractModel{V,T,U}Reference AbstractModel implementation. It is intended to be the stardard in-memory representation for QUBO models.
MathOptInterface/JuMP Integration
Both V and T parameters exist to support MathOptInterface/JuMP integration. This is made possible by choosing V to match MOI.VariableIndex and T as in Optimizer{T}.
Model Forms
QUBOTools.AbstractForm — TypeAbstractForm{T}A form is a $7$-tuple $(n, \ell, Q, \alpha, \beta) \times (\textrm{sense}, \textrm{domain})$ representing a QUBO / Ising model.
- $n$, the dimension, is the number of variables.
- $\mathbf{\ell}$, the linear form, represents a vector storing the linear terms.
- $\mathbf{Q}$, the quadratic form, represents an upper triangular matrix containing the quadratic interactions.
- $\alpha$ is the scale factor, defaults to $1$.
- $\beta$ is the offset factor, defaults to $0$.
The inner data structures used to represent each of these elements may vary.
QUBOTools.AbstractLinearForm — TypeAbstractLinearForm{T}Linear form subtypes will create a wrapper around data structures for representing the linear terms $\mathbf{\ell}'\mathbf{x}$ of the QUBO model.
QUBOTools.AbstractQuadraticForm — TypeAbstractQuadraticForm{T}Quadratic form subtypes will create a wrapper around data structures for representing the quadratic terms $\mathbf{x}'\mathbf{Q}\,\mathbf{x}$ of the QUBO model.
QUBOTools.form — Functionform(src [, formtype::Type{<:AbstractForm{T}}]; sense, domain) where {T}
form(src [, formtype::Union{Symbol,Type}, T::Type = Float64]; sense, domain)Returns the QUBO form stored within src, casting it to the corresponding (sense, domain) frame and, if necessary, converting the coefficients to type T.
The underlying data structure is given by formtype. Current options include :dict, :dense and :sparse.
For more informaion, see QUBOTools.Form and QUBOTools.AbstractForm.
QUBOTools.linear_form — Functionlinear_form(Φ::F) where {T,F<:AbstractForm{T}}Returns the linear part of the QUBO form.
QUBOTools.quadratic_form — Functionquadratic_form(Φ::F) where {T,F<:AbstractForm{T}}Returns the quadratic part of the QUBO form.
QUBOTools.qubo — Functionqubo(args; kws...)This function is a shorthand for form(args...; kws..., domain = :bool).
For more informaion, see QUBOTools.form.
QUBOTools.ising — Functionising(args; kws...)This function is a shorthand for form(args...; kws..., domain = :spin).
For more informaion, see QUBOTools.form.
Underlying Data Structures
QUBOTools.Form — TypeForm{T,LF,LQ}QUBOTools.formtype — Functionformtype(spec::Type)
formtype(spec::Symbol)Returns a form type according to the given specification.
formtype(src)Returns the form type of a form or model.
QUBOTools.DictForm — TypeDictForm{T}This QUBO form is built using dictionaries for both the linear and quadratic terms.
QUBOTools.DictLinearForm — TypeDictLinearForm{T}QUBOTools.DictQuadraticForm — TypeDictQuadraticForm{T}QUBOTools.DenseForm — TypeDenseForm{T}This QUBO form is built using a vector for the linear terms and a matrix for storing the quadratic terms.
QUBOTools.DenseLinearForm — TypeDenseLinearForm{T}QUBOTools.DenseQuadraticForm — TypeDenseQuadraticForm{T}QUBOTools.SparseForm — TypeSparseForm{T}This QUBO form is built using a sparse vector for the linear terms and a sparse matrix for the quadratic ones.
QUBOTools.SparseLinearForm — TypeSparseLinearForm{T}QUBOTools.SparseQuadraticForm — TypeSparseQuadraticForm{T}Solutions
QUBOTools.State — TypeStateQUBOTools.AbstractSample — TypeAbstractSampleA sample is a triple $(\psi, \lambda, r)$ where $\psi \in \mathbb{U}^{n} \sim \mathbb{B}^{n}$ is the sampled vector, $\lambda \in \mathbb{R}$ is the associated energy value and $r \in \mathbb{N}$ is the number of reads, i. e., the multiplicity of the sample.
QUBOTools.Sample — TypeSample{T,U}(state::Vector{U}, value::T, reads::Integer = 1) where{T,U}This is the reference implementation for QUBOTools.AbstractSample.
QUBOTools.sample — Functionsample(model, i::Integer)Returns the $i$-th sample on the model's current solution, if available.
QUBOTools.hassample — Functionhassample(solution::AbstractSolution, i::Integer)Tells if the $i$-th sample is available on the solution.
QUBOTools.AbstractSolution — TypeAbstractSolutionBy definitioon, a solution is an ordered set of samples.
QUBOTools.SampleSet — TypeSampleSet{T,U}(
data::Vector{Sample{T,U}},
metadata::Union{Dict{String,Any},Nothing} = nothing;
sense::Union{Sense,Symbol} = :min,
domain::Union{Domain,Symbol} = :bool,
) where {T,U}Reference implementation of QUBOTools.AbstractSolution.
It was inspired by D-Wave's SampleSet[dwave], with a few tweaks. For example, samples are automatically sorted upon instantiation and repeated samples are merged by adding up their reads field. Also, the solution frame is stored, allowing for queries and cast operations.
QUBOTools.solution — Functionsolution(model) where {T,U<:Integer}Returns the model's current solution.
QUBOTools.state — Functionstate(sample::AbstractSample{T,U}) where {T,U<:Integer}Returns a vector containing the assingment of each variable in a sample.
state(model, i::Integer) where {U<:Integer}Returns a vector corresponding to the bitstring of the $i$-th sample on the model's current solution, if available.
QUBOTools.value — Functionvalue(model)::T where {T}
value(model, i::Integer)::T where {T}
value(solution::AbstractSolution{T,U}, i::Integer)::T where {T,U}
value(model, state::AbstractVector{U}) where {U<:Integer}
value(solution::AbstractSolution{T,U}, state::AbstractVector{U})::T where {T,U<:Integer}
value(Q::Dict{Tuple{Int,Int},T}, ψ::Vector{U}, α::T = one(T), β::T = zero(T)) where {T}
value(h::Dict{Int,T}, J::Dict{Tuple{Int,Int},T}, ψ::Vector{U}, α::T = one(T), β::T = zero(T)) where {T}QUBOTools.energy — FunctionenergyAn alias for value.
QUBOTools.reads — Functionreads(model)
reads(solution::AbstractSolution)Returns the total amount of reads from each sample, combined.
reads(model, i::Integer)
reads(solution::AbstractSolution, i::Integer)Returns the sampling frequency of the $i$-th sample on the model's current solution, if available.
Solution Errors
QUBOTools.SolutionError — TypeSolutionErrorError occurred while gathering solutions.
Data Access
QUBOTools.linear_terms — Functionlinear_terms(model::AbstractModel{V,T,U}) where {V,T,U}Returns an iterator for the linear nonzero terms of a model as Int => T pairs.
QUBOTools.quadratic_terms — Functionquadratic_terms(model::AbstractModel{V,T,U}) where {V,T,U}Returns an iterator for the quadratic nonzero terms of a model as Tuple{Int,Int} => T pairs.
For every key pair $(i, j)$ we have that $i < j$.
QUBOTools.scale — Functionscale(model::AbstractModel)
scale(model::AbstractForm)Returns the scaling factor of a model.
QUBOTools.offset — Functionoffset(model::AbstractModel)
offset(model::AbstractForm)Returns the constant offset factor of a model.
QUBOTools.data — Functiondata(form)
data(sol::AbstractSolution)Retrieves the raw data behind solution and form wrappers.
QUBOTools.metadata — Functionmetadata(model::AbstractModel)
metadata(sol::AbstractSolution)Retrieves metadata from a model or solution as a JSON-compatible Dict{String,Any}.
QUBOTools.id — Functionid(model)Returns a model identifier as an Int or nothing.
QUBOTools.description — Functiondescription(model)Returns the model description as a String or nothing.
QUBOTools.start — Functionstart(model::AbstractModel{V,T,U}; domain = domain(model))::Dict{Int,U} where {V,T,U}Returns a dictionary containing a warm-start value for each variable index.
QUBOTools.attach! — Functionattach!(model::AbstractModel{V,T,U}, sol::AbstractSolution{T,U}) where {V,T,U}Attaches solution to model, replacing existing data and solution metadata. It automatically casts the solution to the model frame upon attachment.
File Formats & I/O
QUBOTools.AbstractFormat — TypeAbstractFormatQUBOTools.format — Functionformat(::AbstractString)::AbstractFormat
format(::Symbol)::AbstractFormat
format(::Symbol, ::Symbol)::AbstractFormatGiven the file path, tries to infer the type associated to a QUBO model format.
QUBOTools.version — Functionversion(fmt::AbstractFormat)Returns the version of a format protocol as a VersionNumber or nothing.
QUBOTools.read_model — Functionread_model(::AbstractString)
read_model(::AbstractString, ::AbstractFormat)
read_model(::IO, ::AbstractFormat)QUBOTools.write_model — Functionwrite_model(::AbstractString, ::AbstractModel)
write_model(::AbstractString, ::AbstractModel, ::AbstractFormat)
write_model(::IO, ::AbstractModel, ::AbstractFormat)QUBOTools.read_solution — Functionread_solution(::AbstractString)
read_solution(::AbstractString, ::AbstractFormat)
read_solution(::IO, ::AbstractFormat)QUBOTools.write_solution — Functionwrite_solution(::AbstractString, ::AbstractSolution)
write_solution(::AbstractString, ::AbstractSolution, ::AbstractFormat)
write_solution(::IO, ::AbstractSolution, ::AbstractFormat)Format & I/O Errors
QUBOTools.FormatError — TypeFormatErrorError related to the format specification.
QUBOTools.SyntaxError — TypeSyntaxErrorSyntax error while parsing file.
Model Metrics
QUBOTools.dimension — Functiondimension(model)::IntegerCounts the total number of variables in the model.
QUBOTools.linear_size — Functionlinear_size(model)Counts the number of non-zero linear terms in the model.
QUBOTools.quadratic_size — Functionquadratic_size(model)Counts the number of non-zero quadratic terms in the model.
QUBOTools.density — Functiondensity(model)::Float64Computes the density $\rho$ of non-zero terms in a model, according to the expression[qplib]
\[\rho = \frac{n_{\ell} + 2 n_{q}}{n^{2}}\]
where $n_{\ell}$ is the number of non-zero linear terms, $n_{q}$ the number of quadratic ones and $n$ the number of variables.
If the model is empty, returns NaN.
QUBOTools.linear_density — Functionlinear_density(model)::Float64Computes the linear density $\rho_{\ell}$, given by
\[\rho_{\ell} = \frac{n_{\ell}}{n}\]
where $n_{\ell}$ is the number of non-zero linear terms and $n$ the number of variables.
QUBOTools.quadratic_density — Functionquadratic_density(model)::Float64Computes the quadratic density $\rho_{q}$, given by
\[\rho_{q} = \frac{2 n_{q}}{n (n - 1)}\]
where $n_{q}$ is the number of non-zero quadratic terms and $n$ the number of variables.
QUBOTools.topology — Functiontopology(model)Returns a Graphs.jl-compatible graph representing the quadratic interactions between variables in the model.
QUBOTools.adjacency — Functionadjacency(model)An alias for topology.
QUBOTools.geometry — FunctiongeometryReturns a $n \times N$ matrix describing the placement of the $n$ variable sites in $N$-dimensional space.
System Specification
QUBOTools.AbstractArchitecture — TypeAbstractArchitectureQUBOTools.GenericArchitecture — TypeGenericArchitecture()This type is used to reach fallback implementations for AbstractArchitecture.
QUBOTools.architecture — Functionarchitecture(::Any)It should be defined to provide automatic architecture recognition when writing QUBO Solver interfaces.
Example
struct Solver
...
end
struct SolverArchitecture <: AbstractArchitecture
...
end
architecture(::Solver) = SolverArchitecture()QUBOTools.AbstractDevice — TypeAbstractDevice{A<:AbstractArchitecture,V,T,U} <: AbstractModel{V,T,U}A device instance is meant to represent an specific hardware or software device. It is the concrete implementation of an architecture. For example, the topology of a device must be contained within the ideal topology of its architecture.
QUBOTools.GenericDevice — TypeGenericDeviceA thin wrapper around a Model that fulfills the AbstractDevice interface.
QUBOTools.Layout — TypeLayoutQUBOTools.layout — Functionlayout(::Any)
layout(::Any, ::G) where {G<:AbstractGraph}Returns the layout of a model, device architecture, i.e., a description of the geometrical placement of each site as long as the network of their connections.
Problem Synthesis
QUBOTools.AbstractProblem — TypeAbstractProType{T}QUBOTools.generate — Functiongenerate(problem)
generate(rng, problem)Generates a QUBO problem and returns it as a Model.
QUBOTools.SherringtonKirkpatrick — TypeSherringtonKirkpatrick{T}(n::Integer, μ::T, σ::T)Generates a Sherrington-Kirkpatrick model in $n$ variables. Coefficients are normally distributed with mean $\mu$ and variance $\sigma$.
QUBOTools.Wishart — TypeWishart{T}(n::Integer, m::Integer)Represents the Wishart model on $n$ variables whose $\mathbf{W}$ matrix has $m$ columns.
When true, the discretize keyword limits the entries of the $\mathbf{R}$ matrix to $\pm 1$. The precision, on the other hand, is the amount of digits to round each entry $R_{i,j}$ after sampling from a normal distribution $\mathcal{N}(0, 1)$.
Solution Metrics
Timing
QUBOTools.total_time — Functiontotal_time(sol::AbstractSolution)Retrieves the total time spent during the whole solution gathering process, as experienced by the user.
QUBOTools.effective_time — Functioneffective_time(sol::AbstractSolution)Retrieves the time spent by the algorithm in the strict sense, that is, excluding time spent with data access, precompilation and other activities. That said, it is assumed that $t_{\text{effective}} \le t_{\text{total}}$.
Solution Quality
QUBOTools.success_rate — Functionsuccess_rate(sol::AbstractSolution{T}, λ::T) where {T}Returns the success rate according to the given solution and the target objective value $\lambda$.
Time-to-Target (TTT)
QUBOTools.time_to_target — Functiontime_to_target(sol::AbstractSolution{T}, λ::T, s::Float64=0.99) where {T}Computes the time-to-target (TTT) given the solution and the target threshold $\lambda$. The success factor $s$ defaults to $0.99$.
time_to_target(t::Float64, p::Float64, s::Float64=0.99)Computes the time-to-target (TTT) given the effective time $t$ spent running the algorithm and the success probability $p$. The success factor $s$ defaults to $0.99$.
\[\text{ttt}(t, p; s) = t \frac{\log(1 - s)}{\log(1 - p)}\]
QUBOTools.ttt — FunctiontttAlias for time_to_target.
Hamming Distance
QUBOTools.hamming_distance — Functionhamming_distance(x::Vector{U}, y::Vector{U}) where {U}
hamming_distance(x::Sample{T,U}, y::Sample{T,U}) where {T,U}Visualization
QUBOTools.AbstractVisualization — TypeAbstractVisualizationRepresents a conceptual visualization built from a set of data structures. Its realization may combine multiple plot recipes as well.
Examples
Model Density Heatmap
julia> using Plots
julia> p = QUBOTools.ModelDensityPlot(model)
julia> plot(p)Solution Energy vs. Frequency
julia> using Plots
julia> s = QUBOTools.solution(model)
julia> p = QUBOTools.EnergyFrequencyPlot(s)
julia> plot(p)or simply,
julia> using Plots
julia> p = QUBOTools.EnergyFrequencyPlot(model)
julia> plot(p)