API Reference

Fallback dispatch

When extending QUBOTools, one might want to implement a method for QUBOTools.backend.

QUBOTools.backendFunction
backend(model)::AbstractModel
backend(model::AbstractModel)::AbstractModel

Accesses the model's backend. Implementing this function allows one to profit from fallback implementations of other methods.

source

Variable System

QUBOTools.indexFunction
index(model::AbstractModel{V}, v::V) where {V}

Given a variable, returns the corresponding index.

source
QUBOTools.indicesFunction
indices(model)

Returns a sorted vector $[1, \dots, n]$ that matches the variable indices, where $n$ is the model's dimension.

source
QUBOTools.hasindexFunction
hasindex(model::AbstractModel, i::Integer)::Bool

Given an index, returns whether it is valid for rhe model.

source
QUBOTools.variableFunction
variable(model::AbstractModel, i::Integer)

Given an index, returns the corresponding variable.

source
QUBOTools.hasvariableFunction
hasvariable(model::AbstractModel{V}, v::V)::Bool where {V}

Given a variable, tells if it belongs to the model.

source
PseudoBooleanOptimization.varltFunction
varlt(u::V, v::V) where {V}

Compares two variables, $u$ and $v$, with respect to their length-lexicographic order.

Rationale

This function exists to define an arbitrary ordering for a given type and was created to address [MOI]. There is no predefined comparison between instances MOI's VariableIndex type.

[^MOI]: MathOptInterface Issue [#1985](https://github.com/jump-dev/MathOptInterface.jl/issues/1985)
source

Objective & Domain Frames

QUBOTools.BoolDomainConstant
BoolDomain

Represents the boolean domain $\mathbb{B} = \lbrace{0, 1}\rbrace$.

Properties

\[x \in \mathbb{B}, n \in \mathbb{N} \implies x^{n} = x\]

source
QUBOTools.SpinDomainConstant
SpinDomain

Represents the spin domain $\mathbb{S} = \lbrace{-1, 1}\rbrace$.

Properties

\[s \in \mathbb{S}, n \in \mathbb{Z} \implies s^{2n} = 1, s^{2n + 1} = s\]

source
QUBOTools.SenseType
Sense

Enum representing the minimization and maximization objective senses, Min and Max.

source
QUBOTools.castFunction

Recasting the sense of a model preserves its meaning but the linear terms, quadratic terms and constant offset of a model will have its signs reversed, so does the overall objective function.

\[\begin{array}{ll} \min_{s} \alpha [f(s) + \beta] &\equiv \max_{s} -\alpha [f(s) + \beta] \\ &\equiv \max_{s} \alpha [-f(s) - \beta] \\ \end{array}\]

Warn

Casting to the same (sense, domain) frame is a no-op. That means that no copying will take place automatically, and therefore copy should be called explicitly when necessary.

source

Errors

Models

QUBOTools.ModelType
Model{V,T,U,F<:AbstractForm{T}} <: AbstractModel{V,T,U}

Reference AbstractModel implementation. It is intended to be the stardard in-memory representation for QUBO models.

MathOptInterface/JuMP Integration

Both V and T parameters exist to support MathOptInterface/JuMP integration. This is made possible by choosing V to match MOI.VariableIndex and T as in Optimizer{T}.

source

Model Forms

QUBOTools.AbstractFormType
AbstractForm{T}

A form is a $7$-tuple $(n, \ell, Q, \alpha, \beta) \times (\textrm{sense}, \textrm{domain})$ representing a QUBO / Ising model.

  • $n$, the dimension, is the number of variables.
  • $\mathbf{\ell}$, the linear form, represents a vector storing the linear terms.
  • $\mathbf{Q}$, the quadratic form, represents an upper triangular matrix containing the quadratic interactions.
  • $\alpha$ is the scale factor, defaults to $1$.
  • $\beta$ is the offset factor, defaults to $0$.

The inner data structures used to represent each of these elements may vary.

source
QUBOTools.AbstractLinearFormType
AbstractLinearForm{T}

Linear form subtypes will create a wrapper around data structures for representing the linear terms $\mathbf{\ell}'\mathbf{x}$ of the QUBO model.

source
QUBOTools.AbstractQuadraticFormType
AbstractQuadraticForm{T}

Quadratic form subtypes will create a wrapper around data structures for representing the quadratic terms $\mathbf{x}'\mathbf{Q}\,\mathbf{x}$ of the QUBO model.

source
QUBOTools.formFunction
form(src [, formtype::Type{<:AbstractForm{T}}]; sense, domain) where {T}
form(src [, formtype::Union{Symbol,Type}, T::Type = Float64]; sense, domain)

Returns the QUBO form stored within src, casting it to the corresponding (sense, domain) frame and, if necessary, converting the coefficients to type T.

The underlying data structure is given by formtype. Current options include :dict, :dense and :sparse.

For more informaion, see QUBOTools.Form and QUBOTools.AbstractForm.

source

Underlying Data Structures

QUBOTools.formtypeFunction
formtype(spec::Type)
formtype(spec::Symbol)

Returns a form type according to the given specification.

formtype(src)

Returns the form type of a form or model.

source
QUBOTools.DictFormType
DictForm{T}

This QUBO form is built using dictionaries for both the linear and quadratic terms.

source
QUBOTools.DenseFormType
DenseForm{T}

This QUBO form is built using a vector for the linear terms and a matrix for storing the quadratic terms.

source
QUBOTools.SparseFormType
SparseForm{T}

This QUBO form is built using a sparse vector for the linear terms and a sparse matrix for the quadratic ones.

source

Solutions

QUBOTools.AbstractSampleType
AbstractSample

A sample is a triple $(\psi, \lambda, r)$ where $\psi \in \mathbb{U}^{n} \sim \mathbb{B}^{n}$ is the sampled vector, $\lambda \in \mathbb{R}$ is the associated energy value and $r \in \mathbb{N}$ is the number of reads, i. e., the multiplicity of the sample.

source
QUBOTools.sampleFunction
sample(model, i::Integer)

Returns the $i$-th sample on the model's current solution, if available.

source
QUBOTools.hassampleFunction
hassample(solution::AbstractSolution, i::Integer)

Tells if the $i$-th sample is available on the solution.

source
QUBOTools.SampleSetType
SampleSet{T,U}(
    data::Vector{Sample{T,U}},
    metadata::Union{Dict{String,Any},Nothing} = nothing;
    sense::Union{Sense,Symbol}   = :min,
    domain::Union{Domain,Symbol} = :bool,
) where {T,U}

Reference implementation of QUBOTools.AbstractSolution.

It was inspired by D-Wave's SampleSet[dwave], with a few tweaks. For example, samples are automatically sorted upon instantiation and repeated samples are merged by adding up their reads field. Also, the solution frame is stored, allowing for queries and cast operations.

source
QUBOTools.stateFunction
state(sample::AbstractSample{T,U}) where {T,U<:Integer}

Returns a vector containing the assingment of each variable in a sample.

state(model, i::Integer) where {U<:Integer}

Returns a vector corresponding to the bitstring of the $i$-th sample on the model's current solution, if available.

source
QUBOTools.valueFunction
value(model)::T where {T}

value(model, i::Integer)::T where {T}
value(solution::AbstractSolution{T,U}, i::Integer)::T where {T,U}

value(model, state::AbstractVector{U}) where {U<:Integer}
value(solution::AbstractSolution{T,U}, state::AbstractVector{U})::T where {T,U<:Integer}

value(Q::Dict{Tuple{Int,Int},T}, ψ::Vector{U}, α::T = one(T), β::T = zero(T)) where {T}
value(h::Dict{Int,T}, J::Dict{Tuple{Int,Int},T}, ψ::Vector{U}, α::T = one(T), β::T = zero(T)) where {T}
source
QUBOTools.readsFunction
reads(model)
reads(solution::AbstractSolution)

Returns the total amount of reads from each sample, combined.

reads(model, i::Integer)
reads(solution::AbstractSolution, i::Integer)

Returns the sampling frequency of the $i$-th sample on the model's current solution, if available.

source

Solution Errors

Data Access

QUBOTools.linear_termsFunction
linear_terms(model::AbstractModel{V,T,U}) where {V,T,U}

Returns an iterator for the linear nonzero terms of a model as Int => T pairs.

source
QUBOTools.quadratic_termsFunction
quadratic_terms(model::AbstractModel{V,T,U}) where {V,T,U}

Returns an iterator for the quadratic nonzero terms of a model as Tuple{Int,Int} => T pairs.

Info

For every key pair $(i, j)$ we have that $i < j$.

source
QUBOTools.scaleFunction
scale(model::AbstractModel)
scale(model::AbstractForm)

Returns the scaling factor of a model.

source
QUBOTools.offsetFunction
offset(model::AbstractModel)
offset(model::AbstractForm)

Returns the constant offset factor of a model.

source
QUBOTools.dataFunction
data(form)
data(sol::AbstractSolution)

Retrieves the raw data behind solution and form wrappers.

source
QUBOTools.metadataFunction
metadata(model::AbstractModel)
metadata(sol::AbstractSolution)

Retrieves metadata from a model or solution as a JSON-compatible Dict{String,Any}.

source
QUBOTools.startFunction
start(model::AbstractModel{V,T,U}; domain = domain(model))::Dict{Int,U} where {V,T,U}

Returns a dictionary containing a warm-start value for each variable index.

source
QUBOTools.attach!Function
attach!(model::AbstractModel{V,T,U}, sol::AbstractSolution{T,U}) where {V,T,U}

Attaches solution to model, replacing existing data and solution metadata. It automatically casts the solution to the model frame upon attachment.

source

File Formats & I/O

QUBOTools.formatFunction
format(::AbstractString)::AbstractFormat
format(::Symbol)::AbstractFormat
format(::Symbol, ::Symbol)::AbstractFormat

Given the file path, tries to infer the type associated to a QUBO model format.

source
QUBOTools.versionFunction
version(fmt::AbstractFormat)

Returns the version of a format protocol as a VersionNumber or nothing.

source
QUBOTools.read_modelFunction
read_model(::AbstractString)
read_model(::AbstractString, ::AbstractFormat)
read_model(::IO, ::AbstractFormat)
source
QUBOTools.write_modelFunction
write_model(::AbstractString, ::AbstractModel)
write_model(::AbstractString, ::AbstractModel, ::AbstractFormat)
write_model(::IO, ::AbstractModel, ::AbstractFormat)
source
QUBOTools.read_solutionFunction
read_solution(::AbstractString)
read_solution(::AbstractString, ::AbstractFormat)
read_solution(::IO, ::AbstractFormat)
source
QUBOTools.write_solutionFunction
write_solution(::AbstractString, ::AbstractSolution)
write_solution(::AbstractString, ::AbstractSolution, ::AbstractFormat)
write_solution(::IO, ::AbstractSolution, ::AbstractFormat)
source

Format & I/O Errors

Model Metrics

QUBOTools.densityFunction
density(model)::Float64

Computes the density $\rho$ of non-zero terms in a model, according to the expression[qplib]

\[\rho = \frac{n_{\ell} + 2 n_{q}}{n^{2}}\]

where $n_{\ell}$ is the number of non-zero linear terms, $n_{q}$ the number of quadratic ones and $n$ the number of variables.

If the model is empty, returns NaN.

source
QUBOTools.linear_densityFunction
linear_density(model)::Float64

Computes the linear density $\rho_{\ell}$, given by

\[\rho_{\ell} = \frac{n_{\ell}}{n}\]

where $n_{\ell}$ is the number of non-zero linear terms and $n$ the number of variables.

source
QUBOTools.quadratic_densityFunction
quadratic_density(model)::Float64

Computes the quadratic density $\rho_{q}$, given by

\[\rho_{q} = \frac{2 n_{q}}{n (n - 1)}\]

where $n_{q}$ is the number of non-zero quadratic terms and $n$ the number of variables.

source
QUBOTools.geometryFunction
geometry

Returns a $n \times N$ matrix describing the placement of the $n$ variable sites in $N$-dimensional space.

source

System Specification

QUBOTools.architectureFunction
architecture(::Any)

It should be defined to provide automatic architecture recognition when writing QUBO Solver interfaces.

Example

struct Solver
    ...
end

struct SolverArchitecture <: AbstractArchitecture
    ...
end

architecture(::Solver) = SolverArchitecture()
source
QUBOTools.AbstractDeviceType
AbstractDevice{A<:AbstractArchitecture,V,T,U} <: AbstractModel{V,T,U}

A device instance is meant to represent an specific hardware or software device. It is the concrete implementation of an architecture. For example, the topology of a device must be contained within the ideal topology of its architecture.

source
QUBOTools.layoutFunction
layout(::Any)
layout(::Any, ::G) where {G<:AbstractGraph}

Returns the layout of a model, device architecture, i.e., a description of the geometrical placement of each site as long as the network of their connections.

source

Problem Synthesis

QUBOTools.SherringtonKirkpatrickType
SherringtonKirkpatrick{T}(n::Integer, μ::T, σ::T)

Generates a Sherrington-Kirkpatrick model in $n$ variables. Coefficients are normally distributed with mean $\mu$ and variance $\sigma$.

source
QUBOTools.WishartType
Wishart{T}(n::Integer, m::Integer)

Represents the Wishart model on $n$ variables whose $\mathbf{W}$ matrix has $m$ columns.

When true, the discretize keyword limits the entries of the $\mathbf{R}$ matrix to $\pm 1$. The precision, on the other hand, is the amount of digits to round each entry $R_{i,j}$ after sampling from a normal distribution $\mathcal{N}(0, 1)$.

source

Solution Metrics

Timing

QUBOTools.total_timeFunction
total_time(sol::AbstractSolution)

Retrieves the total time spent during the whole solution gathering process, as experienced by the user.

source
QUBOTools.effective_timeFunction
effective_time(sol::AbstractSolution)

Retrieves the time spent by the algorithm in the strict sense, that is, excluding time spent with data access, precompilation and other activities. That said, it is assumed that $t_{\text{effective}} \le t_{\text{total}}$.

source

Solution Quality

QUBOTools.success_rateFunction
success_rate(sol::AbstractSolution{T}, λ::T) where {T}

Returns the success rate according to the given solution and the target objective value $\lambda$.

source

Time-to-Target (TTT)

QUBOTools.time_to_targetFunction
time_to_target(sol::AbstractSolution{T}, λ::T, s::Float64=0.99) where {T}

Computes the time-to-target (TTT) given the solution and the target threshold $\lambda$. The success factor $s$ defaults to $0.99$.

time_to_target(t::Float64, p::Float64, s::Float64=0.99)

Computes the time-to-target (TTT) given the effective time $t$ spent running the algorithm and the success probability $p$. The success factor $s$ defaults to $0.99$.

\[\text{ttt}(t, p; s) = t \frac{\log(1 - s)}{\log(1 - p)}\]

source

Hamming Distance

QUBOTools.hamming_distanceFunction
hamming_distance(x::Vector{U}, y::Vector{U}) where {U}
hamming_distance(x::Sample{T,U}, y::Sample{T,U}) where {T,U}
source

Visualization

QUBOTools.AbstractVisualizationType
AbstractVisualization

Represents a conceptual visualization built from a set of data structures. Its realization may combine multiple plot recipes as well.

Examples

Model Density Heatmap

julia> using Plots

julia> p = QUBOTools.ModelDensityPlot(model)

julia> plot(p)

Solution Energy vs. Frequency

julia> using Plots

julia> s = QUBOTools.solution(model)

julia> p = QUBOTools.EnergyFrequencyPlot(s)

julia> plot(p)

or simply,

julia> using Plots

julia> p = QUBOTools.EnergyFrequencyPlot(model)

julia> plot(p)
source